Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1367917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628365

RESUMO

Aster yaoshanensis sp. nov., a new species of the family Asteraceae is here described and illustrated. The species is presently known only from rock crevices of mountain valleys in Dayaoshan National Nature Reserve, Guangxi autonomous region, China. Phylogenetic analyses based on ITS sequences and complete plastome data have shown that this new species is a member of genus Aster with high support. Morphologically, it mostly resembles A. jishouensis, but it can be easily distinguished from the latter by bract indumentum (glabrous except margin ciliate vs. villous especially on veins abaxially, glabrous adaxially) and color (green vs. purple), shorter corolla (3.2-3.5 mm vs. 4.5-5.3 mm), bract stalk (obvious, ca.1.2 mm vs. sessile), and different distribution (Guangxi vs. Hunan). The detailed description, distribution map, and photos are provided. This study further elucidates the species identification, phylogeny and characteristic evolution of Aster.

2.
Mitochondrial DNA B Resour ; 9(1): 186-190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282979

RESUMO

Duhaldea cappa, a valuable medicinal plant of genus Duhaldea in the tribe Inuleae, is predominantly found in China, Bhutan, India, Malaysia, Nepal, Pakistan, Thailand, and Vietnam. However, the genomic studies of Duhaldea cappa are limited. In this study, we successfully sequenced and assembled the complete chloroplast genome of Duhaldea cappa. The chloroplast genome is 150,819 bp in length with a 37.73% GC content. The chloroplast genome has a quadripartite structure, consisting of a large single-copy region of 82,731 bp, a small single-copy region of 18,168 bp, and a pair of inverted repeat sequences of 24,960 bp. The genome contains 133 genes. Among these genes, there are 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The phylogeny reconstructed from data of the complete chloroplast genome indicated that Duhaldea cappa is closely related to Pluchea indica in the tribe Inuleae. Analyzing and reporting the chloroplast genome of Duhaldea cappa will establish a solid theoretical and data foundation for the efficient development, conservation, and utilization of this plant species.

3.
PhytoKeys ; 234: 135-143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901136

RESUMO

A new species, Primulaxilingensis K.Huang & Z.X.Fu, sp. nov. (Primulaceae), is described and illustrated. In gross morphology, it is clearly allied to section Minutissimae on account of having stolons, being glabrous, leaf rosette less than or equal to corolla, flower solitary and bract not swollen at base. The new species is easily distinguished by the combination of scape densely yellow farinose, leaf apex acute, rarely broadly obtuse, corolla pale purplish blue and style 3.0-6.0 mm above base of corolla tube, stamens reaching the corolla tube mouth in thrum flower. In addition, the distribution map, morphological comparison of related species and conservation status of the new species are also provided.

4.
Mitochondrial DNA B Resour ; 8(11): 1268-1272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188437

RESUMO

The species of Saussurea sagittifolia Y. S. Chen & S. R. Yi belongs to the family Asteraceae (Cardueae). The complete chloroplast genome of S. sagittifolia was assembled and annotated for the first time in this study. The complete chloroplast genome of S. sagittifolia was 152,535 bp, including a large single-copy (LSC) region of 83,511 bp, a small single-copy (SSC) region of 18,632 bp, and a pair of inverted repeats (IRs) of 25,196 bp. The overall GC content of the chloroplast genome was 37.7%. The chloroplast genome encoded 131 genes, including 87 protein-coding genes, 36 tRNA genes, and eight rRNA genes. Phylogenetic analysis based on complete chloroplast sequences revealed that it related closely to Saussurea medusa.

5.
DNA Res ; 29(6)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355766

RESUMO

Sesame (Sesamum indicum L.) is an important oilseed crop that produces abundant seed oil and has a pleasant flavor and high nutritional value. To date, several Illumina-based genome assemblies corresponding to different sesame genotypes have been published and widely used in genetic and genomic studies of sesame. However, these assemblies consistently showed low continuity with numerous gaps. Here, we reported a high-quality, reference-level sesame genome assembly by integrating PacBio high-fidelity sequencing and Hi-C technology. Our updated sesame assembly was 309.35 Mb in size with a high chromosome anchoring rate (97.54%) and contig N50 size (13.48 Mb), which were better than previously published genomes. We identified 163.38 Mb repetitive elements and 24,345 high-confidence protein-coding genes in the updated sesame assembly. Comparative genomic analysis showed that sesame shared an ancient whole-genome duplication event with two Lamiales species. A total of 2,782 genes were tandemly duplicated. We also identified several genes that were likely involved in fatty acid and triacylglycerol biosynthesis. Our improved sesame assembly and annotation will facilitate future genetic studies and genomics-assisted breeding of sesame.


Assuntos
Sesamum , Sesamum/genética , Genômica
6.
J Adv Res ; 36: 265-276, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35127176

RESUMO

Introduction: Colorectal cancer (CRC) is a common malignant tumor with a high global incidence, metastasis rate and low cure rate. Changes in lipid metabolism-related genes can affect the occurrence and development of CRC, and may be a potential therapeutic target for CRC. Therefore, starting from lipid metabolism-related genes to find natural medicines for tumor treatment may become a new direction in CRC research. Objectives: This study aimed to investigate the effect of PLA2G16, a key gene involved in lipid metabolism, on the biological function of CRC, and whether the anti-CRC effect of GCK is related to PLA2G16. Methods: To explore the role of PLA2G16 in CRC in vitro and in vivo, we performed cell proliferation, migration, invasion and nude mice tumorigenesis assays. As for the mechanism, we designed RNA-seq analysis and verified by western blotting and immunofluorescence experiments. Subsequently, we found the anti-CRC effect of GCK is related to PLA2G16 through western blotting and rescue experiments. Results: We showed that PLA2G16 was significantly higher in CRC tissues than the adjacent normal appearing tissues, and high PLA2G16 expression correlates with unfavorable prognosis of CRC patients. Further, PLA2G16 promoted the malignant progression of CRC by inhibiting the Hippo signaling pathway determined by RNA-seq analysis, and GCK exerted anti-CRC effects by inhibiting the protein expression of PLA2G16 in vitro and in vivo. Conclusion: Our results suggested that PLA2G16 promote the malignant progression of CRC by inhibiting the Hippo signaling pathway and the anti-CRC effect of GCK is through inhibiting the protein expression of PLA2G16.


Assuntos
Neoplasias Colorretais , Metabolismo dos Lipídeos , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ginsenosídeos , Humanos , Camundongos , Camundongos Nus
7.
Drug Metab Rev ; 52(1): 125-138, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31984805

RESUMO

The gastrointestinal microbiota and host co-evolve into a complex 'super-organism,' and this relationship plays a vital role in many physiological processes, such as drug metabolism. Ginseng is an important medicinal resource and the main ingredients are ginsenosides, which are less polar, difficult to absorb, and have low bioavailability. However, studies have shown that the biological activity of ginsenosides such as compound K (CK), ginsenoside Rg3 (Rg3), ginsenoside Rh2 (Rh2), 20(S)-protopanaxatriol (20(S)-PPT), and 20(S)-protopanaxadiol (20(S)-PPD) is closely related to the gastrointestinal microbiota. In this paper, the metabolic pathway of gastrointestinal microbiota-generated ginsenosides and the main pharmacological effects of these metabolites are discussed. Furthermore, our study provides a new insight into the discovery of novel drugs. Specifically, in new drug screening process, candidates with low biological activity and bioavailability should not be excluded. Because their metabolites may exhibit good pharmacological effects due to the involvement of the gastrointestinal microbiota. In addition, in further research studies to develop probiotics, a combination of agents could exert greater efficacy than single agents. Moreover, differences in lifestyle and diet lead to differences in the gastrointestinal microbiota in the human body. Therefore, administration of the same drug dose to different individuals could elicit different therapeutic effects, owing to the involvement of the gastrointestinal microbiota. Thus, treatment accuracy could be achieved by detecting the gastrointestinal microbiota before drug treatment.HighlightsGastrointestinal microbiota plays a decisive role in bioactivities of ginsenosides.The metabolic pathway and main pharmacological effects of ginsenoside metabolites are discussed.It provides new insights into novel drug discovery and further research to find probiotic, combinations to exert greater efficacy.Differences in lifestyle and diet, varies the gastrointestinal microbiota in the human body. However, the same dose of a drug producing different therapeutic effects may involve gastrointestinal microbiota.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Ginsenosídeos/metabolismo , Ginsenosídeos/farmacologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA